Involvement of vesicular H+-ATPase in insulin-stimulated glucose transport in 3T3-F442A adipocytes.
نویسندگان
چکیده
In secretory cells, osmotic swelling of secretory granules is proposed to be an intermediate step in exocytic fusion of the granules with the plasma membrane. For osmotic swelling of the granule, a H (+) gradient generated by vacuolar-type H (+) -ATPase (V-ATPase) may be a driving force for accumulation of K (+) via its exchange with H (+) , concurrent with accumulation of Cl (-) and H(2)O. Here, we investigated whether a similar chemiosmotic mechanism is involved in the insulin-stimulated recruitment of GLUT4 to the plasma membrane in 3T3-F442A adipocytes. Incubating cells in a hypo-osmotic medium significantly increased 2-deoxy glucose (2-DG) uptake and the plasma membrane GLUT4 content (possibly via induction of osmotic swelling of GLUT4-containing vesicles (G4V)) and also potentiated the insulin-stimulated 2-DG uptake. Promotion of the G4V membrane ionic permeability using nigericin, an electroneutral K (+) /H (+) exchange ionophore, increased 2-DG uptake and the plasma membrane GLUT4 content. However, co-treatment with nigericin and insulin did not show an additive effect. Bafilomycin A(1), a diagnostically specific inhibitor of V-ATPase, inhibited insulin- and nigericin-stimulated 2-DG uptake. Immunoadsorption plus immunoblotting demonstrated that GLUT4 and V-ATPase co-localize in the same intracellular membranes. Together, these results indicate that V-ATPases in the G4V membrane may play an important role in the insulin-stimulated exocytic fusion of G4V with the plasma membrane via its participation in osmotic swelling of the vesicle.
منابع مشابه
Rottlerin inhibits insulin-stimulated glucose transport in 3T3-L1 adipocytes by uncoupling mitochondrial oxidative phosphorylation.
There is increasing evidence that protein kinase C (PKC) isoforms modulate insulin-signaling pathways in both positive and negative ways. Recent reports have indicated that the novel PKCdelta mediates some of insulin's actions in muscle and liver cells. Many studies use the specific inhibitor rottlerin to demonstrate the involvement of PKCdelta. In this study, we investigated whether PKCdelta m...
متن کاملRole of PKC isoforms in glucose transport in 3T3-L1 adipocytes: insignificance of atypical PKC.
To elucidate the involvement of protein kinase C (PKC) isoforms in insulin-induced and phorbol ester-induced glucose transport, we expressed several PKC isoforms, conventional PKC-alpha, novel PKC-delta, and atypical PKC isoforms of PKC-lambda and PKC-zeta, and their mutants in 3T3-L1 adipocytes using an adenovirus-mediated gene transduction system. Endogenous expression and the activities of P...
متن کاملTranscriptional regulation of fatty acid synthase gene by somatotropin in 3T3-F442A adipocytes.
Somatotropin (ST) antagonizes insulin stimulation of fatty acid synthase (FAS) enzyme activity and gene transcription in adipocytes. Previous studies have shown that an insulin response element (IRE) is located in the proximal region of the FAS promoter (-71 to -50) and upstream stimulatory factor (USF) 1 binds to this IRE. The present study was conducted to initially evaluate whether there is ...
متن کاملActivation of the mammalian target of rapamycin pathway acutely inhibits insulin signaling to Akt and glucose transport in 3T3-L1 and human adipocytes.
The mammalian target of rapamycin (mTOR) pathway has recently emerged as a chronic modulator of insulin-mediated glucose metabolism. In this study, we evaluated the involvement of this pathway in the acute regulation of insulin action in both 3T3-L1 and human adipocytes. Insulin rapidly (t(1/2) = 5 min) stimulated the mTOR pathway, as reflected by a 10-fold stimulation of 70-kDa ribosomal S6 ki...
متن کاملRegulation of insulin-stimulated glucose transport by chronic glucose exposure in 3T3-L1 adipocytes.
Chronic hyperglycemia causes insulin resistance, termed glucose toxicity. Herein we studied chronic glucose-dependent regulation of the glucose transport system in adipocytes. 3T3-L1 adipocytes were incubated for up to 24 h with low (1 mM) or high (25 mM) glucose, and glucose transport was subsequently analyzed. 100 nM insulin was present throughout the experiments. 24 h incubation with 1 mM gl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Endocrine journal
دوره 54 5 شماره
صفحات -
تاریخ انتشار 2007